
Enabling Robots to Communicate their Objectives
Sandy H. Huang†, David Held†, Pieter Abbeel†‡, Anca D. Dragan†

†University of California, Berkeley, EECS ‡OpenAI

Abstract—The overarching goal of this work is to efficiently
enable end-users to correctly anticipate a robot’s behavior in
novel situations. Since a robot’s behavior is often a direct result
of its underlying objective function, our insight is that end-users
need to have an accurate mental model of this objective function
in order to understand and predict what the robot will do.

While people naturally develop such a mental model over time
through observing the robot act, this familiarization process may
be lengthy. Our approach reduces this time by having the robot
model how people infer objectives from observed behavior, and
then it selects those behaviors that are maximally informative.

The problem of computing a posterior over objectives from
observed behavior is known as Inverse Reinforcement Learning
(IRL), and has been applied to robots learning human objectives.
We consider the problem where the roles of human and robot
are swapped. Our main contribution is to recognize that unlike
robots, humans will not be exact in their IRL inference. We
thus introduce two factors to define candidate approximate-
inference models for human learning in this setting, and analyze
them in a user study in the autonomous driving domain. We
show that certain approximate-inference models lead to the
robot generating example behaviors that better enable users to
anticipate what it will do in novel situations. Our results also
suggest, however, that additional research is needed in modeling
how humans extrapolate from examples of robot behavior.

I. INTRODUCTION

Imagine riding in a self-driving car that needs to quickly
change lanes to make a right turn. The car suddenly brakes
in order to merge safely behind another car, because it deems
it unsafe to speed up and merge in front. A passenger who
knows the car is defensive and that it values safety much
more than efficiency would be able to anticipate this behavior.
But passengers less familiar with the car would not anticipate
this sudden braking, so they may be surprised and possibly
frightened.

There are many reasons why it is beneficial for humans
to be able to anticipate a robot’s movements, from subjective
comfort [7] to ease of coordination when working with and
around the robot [8, 27]. However, anticipation is challeng-
ing [7, 9, 16]. Our goal is to enable end-users to accurately
anticipate how a robot will act, even in novel situations that
they have not seen the robot act in before—like a new traffic
scenario, or a new placement of objects on a table that the
robot needs to clear.

A robot’s behavior in any situation is a direct consequence
of the objective (or reward) function the robot is optimizing:
(most) robots are rational agents, acting to maximize expected
cumulative reward [25]. Whether the robot’s objective function
is hard-coded or learned, it captures the trade-offs the robot
makes between features relevant to the task. For instance, a car
might trade off between features related to collision avoidance
and efficiency [15], with more “aggressive” cars prioritizing
efficiency at the detriment of, say, distance to obstacles [26].

P(
θ

|
ξ 1

)

aggressive defensive

ξ1 (informative) ξ2 (uninformative)

P(
θ

|
ξ 2

)

aggressive defensive

Fig. 1: We show examples ξ of the yellow autonomous car’s
behavior that are maximally informative in guiding the human toward
understanding the robot’s objective function (e.g., aggressive versus
defensive). For instance, in environments where the car needs to
merge into the right lane, its behavior is more informative when there
is another car present (left) than when the lane is empty (right). We
consider the case where the robot’s objective function is represented
by a linear combination of features, weighted by θ.

The insight underlying our approach is the following:
The key to end-users being able to anticipate what
a robot will do in novel situations is having a good
understanding of the robot’s objective function.

Note that understanding the objective function does not
mean users must be able to explicate it—to write down the
equation, or even to assign the correct reward to a behavior
or a state-action pair. Rather, users only need to have an
implicit representation of what drives the robot’s behavior, i.e.,
a qualitative understanding of the trade-offs the robot makes.

Fortunately, users will naturally improve their mental model
of how a robot acts, given examples of the robot behaving
optimally [7]. Further, evidence suggests that people will use
this behavior to make inferences about the robot’s underlying
objective function [2, 12].

However, not all environments are equally informative. In
many environments, a robot’s optimal behavior does not fully
describe the trade-offs that the robot would make in other
environments, i.e. parts of the robot’s objective will remain
under-determined. For example, an autonomous car driving
down a highway with no cars nearby will drive at the speed
limit and stay in its lane, regardless of its trade-off between
efficiency versus staying far away from other cars. Another
example is when a car can change lanes without interacting
with any other cars (Fig. 1, right). An end-user mainly exposed
to these types of behavior will have difficulty forming an
accurate mental model of the robot’s objective function and
anticipating how the robot will behave in more complex
scenarios. On the other hand, suppose an autonomous car
chooses to speed up and merge in front of another car, cutting
it off (Fig. 1, left). This scenario more clearly illustrates the
trade-offs this car makes regarding safety versus efficiency.

We focus on enabling robots to purposefully choose such

informative behaviors that actively communicate the robot's
objective function. We envision a training phase for interac-
tion, where the robot showcases informative behavior in order
to quickly teachthe end-user what it is optimizing for.

In order to choose the most informative example behaviors
for communicating a robot's objective function to humans, we
take analgorithmic teachingapproach [3, 10, 14, 22, 32, 34]:
we model how humans make inferences about the robot's
objective function from examples of its optimal behavior,
and use this model to generate examples that increase the
probability of inferring the correct objective function.

The opposite problem, machines inferring objective func-
tions from observed human behavior, can be solved using
Inverse Reinforcement Learning (IRL) [18]. Prior work has
investigated how to teach an objective function through ex-
ample behavior tomachine learners running IRL [6]. But
the challenge in teachingpeopleinstead of machines is that
while machines can performexactinference, people are likely
to be approximate in their inference.1 People do not have
direct access to con�guration-space trajectory and the exact
environment state, whereas robots do, at least in kinesthetic
teaching (and in [6]). People also cannot necessarily distin-
guish between a perfectly optimal trajectory for one objective
and an ever-so-slightly suboptimal one [31].

Our main contribution is to introduce a systematic collec-
tion of approximate-inference models and, in a user study,
compare their performance relative to the exact inference
model. We focus on the autonomous driving domain, where
a car chooses example behaviors that are informative about
the trade-offs it makes in its objective function. We measure
teaching performance—how useful the generated examples
are in enabling users to anticipate the car's behavior in test
situations—and �nd that one particular approximate-inference
model signi�cantly outperforms exact inference (the others
perform on par). This supports our central hypothesis that
accounting for approximations in user inference is indeed
helpful, but suggests that we need to be careful abouthow
we model this approximate inference.

Further analysis shows teaching performance correlates with
covering the full space of strategies that the robot is capable of
adopting. For instance, the teaching algorithm cannot just show
the car cutting people off; it also needs to show an example
where it is optimal to brake and merge behind. We show the
best results are obtained by a coverage-augmented algorithm
that leverages an approximate-inference user model while
encouraging full coverage of all possible driving strategies.

Our work takes a stab at an important yet under-explored
problem of making robot objective functions more transparent
to people.2 This is important in the short term for human-robot
interaction, as well as in the long term for building AI systems
that are trustworthy and bene�cial to people. Our results are

1Prior work has applied algorithmic teaching to teach humans, primarily for
binary classi�cation of images [4, 5, 13, 28]. In line with our work, Patil et
al. show accounting for human limitations (in their case limiting the number
of recalled examples) improves teaching performance [20].

2Related work has explored communicating the payoff matrix in a col-
laborative (state-invariant) repeated game [19]. Prior work on transparent
robot behavior has explored explaining failure modes [23, 30], verbalizing
experiences [21, 24], and explaining policies [11].

encouraging, but also leave room for better models of how
people extrapolate from observed robot behavior.

II. A LGORITHMIC TEACHING OF OBJECTIVE FUNCTIONS

We model how people infer a robot's objective function
from its behavior, and leverage this model to generate infor-
mative examples of behavior.

A. Preliminaries

Let S be the (continuous) set of states andA be the
(continuous) set of actions available to the robot. We assume
the robot's objective (or reward) function is represented as a
linear combination of features3 weighted by some� � [1]:

R� � (st ; at ; st +1 ; E) = � �> � (st ; at ; st +1 ; E); (1)

wherest is the state at timet, at is the action taken at time
t, and E is the environment (or world) description. In the
case of driving,E contains information about the lanes, the
trajectories of other cars, and the starting state of the robot.

Given an environmentE , the parameters� of the objective
function determine the robot's (optimal) trajectory� �

E :

� �
E = arg max

� E 2 � E

� T � (� E); (2)

where� (� E) =
P T � 1

t =0
 t � (st ; at ; st +1 ; E) and
 is a discount
factor between 0 and 1 that favors obtaining rewards earlier.
� E refers to all possible trajectories in environmentE .

B. Algorithmic Teaching Framework

We model the human observer as starting with a prior
P(�) over what � � might be, and updating their belief as
they observe the robot act. We assume the human knows the
features� (�) relevant to the task.4 The robot behaves optimally
with respect to the objective induced by� � , but as Fig. 1
shows, the details of the environment (e.g., locations of nearby
cars and the robot's goal) in�uence the behavior, and therefore
in�uence what effect the behavior has on the person's belief.

To best leverage this effect, we search for a sequence of
environmentsE1:n such that when the person observes the
optimal trajectories in those environments, their updated belief
places maximum probability on the correct� , i.e., � � :

arg max
E 1: n

P(� � j� � �

E 1: n
) (3)

To solve this optimization problem, the robot needs to model
how examples update the person's belief,P(� � j� � �

E 1: n
). We

propose to modelP(� � j� � �

E 1: n
) via Bayesian inference:

P(� j� � �

E 1: n
) / P(� � �

E 1: n
j�)P(�) = P(�)

nY

i =1

P(� � �

E i
j�):5 (4)

With this assumption, modeling how people infer the ob-
jective function parameters reduces to modelingP(� j�): how

3We can make this assumption without loss of generality, as there are no
restrictions on how complex these features can be.

4In future work, we plan to study interactions for achieving common ground
on what features are important.

5Conditional independence can be assumed, since� contains all the
information needed to calculate the probability of a trajectory.

probable they would �nd trajectory� if they assumed the robot
optimizes the objective function induced by� . We explore
different models of this, starting with exact-inference IRL as
a special case. We then introduce models that account for
the inexactness that is inevitable when real people make this
inference.

C. Exact-Inference IRL as a Special Case

Inverse Reinforcement Learning (IRL) [18] extracts an
objective function from observed behavior by assuming that
the observed behavior is optimizing some objective from a set
of candidates. When that assumption is correct, IRL �nds an
objective function that assigns maximum reward (or minimum
cost) to the observed behavior.

Algorithmic teaching has been used with exact-inference
IRL learners [6]: the learner eliminates all objective functions
which would not assign maximum reward to the observed
behavior. This can be expressed by the model in (4) via a
particular distribution forP(� � �

E j�):

P(� � �

E j�) =

(
1; if 8� E ; � > � (� � �

E) � � > � (� E) � 0:
0; otherwise:

(5)

This assumes people assign probability 0 to trajectories that
are not perfectly optimal with respect to� , so those candidate
� s receive a probability of zero. Thus, each trajectory that
the person observes completely eliminates from their belief
any objective function that would not have produced exactly
this trajectory when optimized. Assuming learners start with a
uniform prior over objective functions, the resulting belief is a
uniform distribution across the remaining candidate objective
functions—� s for which all observed trajectories are optimal.

While this is a natural starting point, it relies on people be-
ing able to perfectly evaluate whether a trajectory isthe(or one
of the) global optima of any candidate objective function. We
relax this requirement in our approximate-inference models.

D. Approximate-Inference Models

We introduce a space of approximate-inference models,
obtained by manipulating two factors in a 2–by–3 factorial
design.
Deterministic versus Probabilistic Effect. In the exact-
inference model, a candidate� is either out or still in: the
trajectories observed so far have either shown that� is impos-
sible (because they were not global optima for the objective
induced by that�), or have left it in the mix, assigning it equal
probability as the other remaining� s.

We envision two ways to relax this assumption that a person
can identify whether a trajectory is optimal given a� :

One way is for observed trajectories to still either eliminate
the � or keep it in the running, but to be more conservative
about which� s get eliminated. That is, even if the observed
trajectory is not a global optimum for a� , the person will
not eliminate that� if the trajectory isclose enough(under
some distance metric) to the global optimum. We call this the
deterministiceffect.

A second way is for observed trajectories to have aproba-
bilistic effect on� s: rather than eliminating them completely,

trajectories can make a� less likely, depending on how far
away its optimal trajectory is from the observed trajectory.

In both cases,P(� � �

E j�) no longer depends on the example
trajectory being optimal with respect to� . Instead, it depends
on thedistanced(�; �) between� �

E , the optimal trajectory for
� , and� � �

E , the observed trajectory which is optimal given� � .
Given some distance metricd and hyperparameters�; � > 0,
� For deterministic effect,

P(� � �

E j�) / 0 if d(� �
E ; � � �

E) > � , or 1 otherwise.

� For probabilistic effect,
P(� � �

E j�) / e� � �d(� �
E ;� � �

E) .6

The deterministic effect results in conservative hypothesis
elimination: it models a user who will either completely
eliminate a� or not, but who will not eliminate� s with optimal
trajectories close to the observed trajectory. In contrast, the
probabilistic effect decreases the probability of� s with far
away optimal trajectories, never fully eliminating any.

The exact-inference IRL model (Sec. II-C) is a special case
with deterministic effect and a reward-based distance metric
with � = 0 ; it assumes there is no approximate inference.
Distance Metrics. Both deterministic and probabilistic effects
rely on the person's notion of how close the optimal trajectory
with respect to a candidate� is from the observed trajectory.
We envision that closeness can be measured either in terms of
the reward of the trajectories with respect to� , or in terms of
the trajectories themselves.

We explore three options ford. The �rst depends on the
reward. This distance metric models people with dif�culty
comparing the cumulative discounted rewards of two trajecto-
ries, with respect to a given setting of the reward parameters.
So, if in environmentE the observed trajectory� � �

E has almost
the same reward as� �

E , the optimal trajectory with respect to
� , thenP(� � �

E j�) will be high.
� reward-based7: d(� �

E ; � � �

E) = � > � (� �
E) � � > � (� � �

E):
The second option depends not on reward, but on the

physical trajectories. It assumes it is not high reward that
can confuse people about whether the observed trajectory is
optimal with respect to� , but rather physical proximity to
the true optimal trajectory: this models people who cannot
perfectly distinguish between perceptually-similar trajectories.

� Euclidean-based:d(� �
E ; � � �

E) = 1
T

P T
t =1 jj s�

E;t � s� �

E;t jj2

wheres�
E;t is the state at timet for the trajectory� �

E .8

Finally, a more conservative version of the Euclidean dis-
tance metric is the strategy-based metric. The idea here is that
for any environmentE , trajectories generated by candidate
� s can be clustered into types, or strategies. The strategy-
based metric assumes people do not distinguish among tra-
jectories that follow the same strategy. For instance, people
will consider all trajectories in which the robot speeds up
and merges in front of another car to be equivalent, and all
trajectories in which the robot merges behind the car to be

6We noticed normalizing this distribution produced very similar results to
leaving it unnormalized, so we do the latter in our experiments, analogous to
other algorithmic teaching work not based on reward functions [28].

7Note that this is always positive because� �
E has maximal reward w.r.t.� .

8This requires an appropriate representation of the state space, e.g., if the
dimensions ofs�

E;t have different ranges, normalization may be necessary.

Fig. 2: The possible driving environments cluster naturally into four classes, with two trajectory strategies per class. Each image shows the
trajectories of the autonomous car (yellow) and non-autonomous car (gray) in a particular environment. Positions later in the trajectory are
more opaque. The goal of the autonomous car in each environment is highlighted in blue: merge into the right lane or drive forward.

equivalent. So, if in environmentE the observed trajectory
and the optimal trajectory with respect to� have the same
strategy, thenP(� � �

E j�) / 1.
� strategy-based:d(� �

E ; � � �

E) = 0 if � �
E and � � �

E are in the
same trajectory strategy cluster,1 otherwise.

Relation to MaxEnt IRL. MaxEnt IRL [33] is an IRL
algorithm that assumes demonstrations are noisy (i.e., not
necessarily optimal). In our setting, we instead assume demon-
strations are optimal but the learner is approximate. These
two sources of noise result in the same model: the MaxEnt
distribution is equivalent to ourprobabilistic reward-based
model:

P(� � �

E j�) / e�� T � (� � �
E) (6)

/ e� (� T � (� � �
E) � � T � (� �

E)) = e� � �dr (� �
E ;� � �

E) : (7)

E. (Submodular) Example Selection

Given a learner modelM that predictsPM (� � j� � �

E 1: n
),

our approach greedily selects environmentE t to maximize
PM (� � j� � �

E 1: t
), which is estimated by uniformly sampling can-

didate� s. We allow the model to select up to ten examples; it
stops early if no additional example improves this probability.

This greedy approach is near-optimal for determin-
istic effect with a uniform prior, since in this case
maximizing PM (� � j� � �

E 1: t
) is equivalent to maximizing

�
P

� 6= � � PM (� j� � �

E 1: t
), which is a non-decreasing monotonic

submodular function [17]. This function is non-decreasing
because adding example trajectories� � �

E can only eliminate
candidate� 's, not add them, and we assume the set of candi-
date� s considered by the human does not change over time.
Additionally, a particular observed trajectory� � �

E eliminates
the same set of� s no matter when it is added to the sequence.
Thus, showing that example later on in the sequence cannot
eliminate more� s than adding it earlier, which makes this
function submodular.

F. Hyperparameter Selection

We would like to select values for hyperparameters� and�
(for deterministic and probabilistic effect, respectively) that
accurately model human learning in this domain.� and �
affect the informativeness of examples. If� is too large, then
most environments will be uninformative, since the observed
trajectory will be within� distance away from optimal trajec-
tories of many� s, so those� s will not be eliminated. Thus,
PM (� � j� � �

E 1: n
) will be low. On the other hand, if� is too small,

then some environments will be extremely informative, so only
one or a few examples will be selected before no further
improvement inPM (� � j� � �

E 1: n
) can be achieved. Analogous

reasoning holds for� .
We expect humans to be teachable (i.e.,� cannot be too

large) and to have approximate rather than exact inference (i.e.,
� cannot be too small), so they would bene�t from observing
several examples rather than just one or two. Based on this,
we select� and � for each approximate-inference model by
choosing the value inf 10� 5; 10� 4; : : : ; 104; 105g that results
in an increase fromPM (� � j� � �

E 1
) to PM (� � j� � �

E 1: n
) of at least

0.1, and selects the largest number of unique examples to
show.

III. E XAMPLE DOMAIN

We evaluate how our proposed approximate-inference mod-
els perform for teaching the driving style of a simulated
autonomous car. In this domain, participants witness examples
(in simulation) of how the car drives, with the goal of being
able to anticipate how it will drive when they ride in it.
Driving Simulator. We model the dynamics of the car with
the bicycle vehicle model [29]. Let the state of the car be
x = [x y � v �]> , where(x; y) are the coordinates of the
center of the car's rear axle,� is the heading of the car,v is
its velocity, and� is the steering angle. Letu = [u1 u2]>

represent the control input, whereu1 is the change in steering
angle andu2 is the acceleration. Additionally, letL be the

	Introduction
	Algorithmic Teaching of Objective Functions
	Preliminaries
	Algorithmic Teaching Framework
	Exact-Inference IRL as a Special Case
	Approximate-Inference Models
	(Submodular) Example Selection
	Hyperparameter Selection

	Example Domain
	Analysis of Approximate Inference Models with Ideal Users
	User Study
	Experiment Design
	Analysis

	Utility of Algorithmic Teaching
	Baselining Performance
	Coverage-Augmented Algorithmic Teaching
	User Study on Coverage

	Discussion
	Acknowledgments

